Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis[tris(ethylenediamine)cobalt(III)] dichlorobis[μ-(1-hydroxyethylidene)-diphosphonato(4-)]diruthenium (II,III)(Ru-Ru) chloride trihydrate

Yang Peng, Yi-Zhi Li, Song-Song Bao and Li-Min Zheng*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: Imzheng@nju.edu.cn

Received 3 March 2004
Accepted 19 April 2004
Online 12 June 2004
In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]_{2}\left[\mathrm{Ru}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{7} \mathrm{P}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ $\mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the building unit contains two crystallographically independent dinuclear $\left[\mathrm{Ru}_{2}(\text { hedp })_{2} \mathrm{Cl}_{2}\right]^{5-}$ anions, where hedp [viz. (1-hydroxyethylidene)diphosphonate] serves as a bischelating bridging ligand, two types of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ cations, one uncoordinated Cl^{-}anion and five water molecules of crystallization. The $\left[\mathrm{Ru}_{2}(\text { hedp })_{2} \mathrm{Cl}_{2}\right]^{5-}$ anions are connected to one another, forming one-dimensional chains along the a axis. The $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ cations are located between these chains and lie across inversion centres. An extensive series of hydrogen bonds lead to the formation of a three-dimensional supramolecular network structure, with channels generated along the [100] direction. The uncoordinated water molecules and Cl^{-} anions reside in these channels.

Comment

Metal phosphonates are organic-inorganic hybrid materials that are important because of their potential applications in ion exchange, sensors, catalysis and molecular recognition (Clearfield, 1998; Cao et al., 1992; Zheng et al., 2000; Katz et al., 1991; Alberti, 1996). Although a number of new compounds have been reported, examples of ruthenium phosphonate compounds are extremely limited (Yi et al., 2003; McCann et al., 1993). In a previous paper (Yi et al., 2003), we described the synthesis of the ruthenium-hedp compound $\left(\mathrm{NH}_{4}\right)_{3}{ }^{-}$ $\mathrm{Ru}_{2}(\text { hedp })_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [hedp is (1-hydroxyethylidene)diphosphonate, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})\left(\mathrm{PO}_{3}\right)_{2}$], which exhibits a novel two-dimensional structure. We present here the synthesis and structure of a new ruthenium phosphonate compound, namely $\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{2^{-}}$ $\left[\mathrm{Ru}_{2}\right.$ (hedp) $\left.{ }_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (I) (en is ethylenediamine).

Compound (I) has a three-dimensional open-network structure, composed of $\left[\mathrm{Ru}_{2}(\text { hedp })_{2} \mathrm{Cl}_{2}\right]^{5-}$ anions and $\left[\operatorname{Co}(\mathrm{en})_{3}\right]^{3+}$ cations. As shown in Fig. 1, there are two crystallographically independent Ru atoms, each having a distorted octahedral environment, with the four basal positions occupied by phosphonate O atoms from two equivalent
hedp ligands ($\mathrm{O} 3, \mathrm{O} 6, \mathrm{O} 2 A$ and $\mathrm{O} 4 A$ for atom Ru 1 , and O 9 , O12, O8B and O13B for atom Ru2; see Fig. 1 for symmetry codes). The $\mathrm{Ru}-\mathrm{O}$ bond distances range from 1.997 (3) to 2.051 (3) \AA and the $\mathrm{O}-\mathrm{Ru}-\mathrm{O}$ bond angles range from 88.34 (13) to 92.24 (13) ${ }^{\circ}$ for cis angles and from 174.93 (13) to $176.82(12)^{\circ}$ for trans angles. One of the axial positions in each Ru octahedron is occupied by a Cl^{-}anion and the other site is filled by the equivalent Ru atom. The $\mathrm{Ru} 1-\mathrm{Cl} 1$ and $\mathrm{Ru} 2-\mathrm{Cl} 2$ bond distances are 2.5997 (13) and 2.5525 (13) \AA, respectively. Each hedp group serves as a bis-chelating bridging ligand, linking the two equivalent Ru atoms via four phosphonate O atoms, thus forming $\left[\mathrm{Ru}_{2}(\text { hedp })_{2} \mathrm{Cl}_{2}\right]^{5-}$ dimers. The remaining two phosphonate O atoms are pendent. The $\mathrm{Ru} 1-\mathrm{Ru} 1 A$ and $\mathrm{Ru} 2-\mathrm{Ru} 2 B$ bond distances are 2.3587 (8) and 2.3786 (8) \AA, respectively. These values are in agreement with those reported for $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Ru}_{2}(\text { hedp })_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Inversion centers are located at the mid-points of the $\mathrm{Ru} 1-\mathrm{Ru} 1 A$ and $\mathrm{Ru} 2-\mathrm{Ru} 2 A$ bonds.

(I)

The diruthenium units, Ru_{2} and $\mathrm{Ru} 2_{2}$, are each linked to their equivalents via $\mathrm{O} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{O} 7-\mathrm{H} 7 E$ $\cdots 5^{\text {vii }}=2.717(5) \AA$ for Ru_{2} and $\mathrm{O} 14-\mathrm{H} 14 D \cdots \mathrm{O} 11^{\text {viii }}=$ 2.679 (5) \AA for Ru_{2}; symmetry codes: (vii) $-x, 1-y, 2-z$; (viii) $1-x,-y, 1-z$; Table 1], forming two types of chains along the a axis (Fig. 2). These chains are separated by $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ cations. An extensive series of intermolecular hydrogen bonds $\left[\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O} 2^{\mathrm{i}}=3.006(5) \AA\right.$, $\mathrm{N} 6-\mathrm{H} 6 \mathrm{C}$ $\cdots 6^{\mathrm{ii}}=3.040(5) \AA, \mathrm{N} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O} 2^{\mathrm{i}}=2.872(5) \AA, \mathrm{N} 8-$ $\mathrm{H} 8 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}=2.906(5) \AA, \mathrm{N} 9-\mathrm{H} 9 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}=2.978(5) \AA$,

Figure 1
The molecular structure of (I), with the atomic labeling scheme. H atoms have been omitted for clarity. Atoms labeled with the suffixes A and B are at the symmetry positions $(1-x, 1-y, 2-z)$ and $(2-x,-y, 1-z)$, respectively.

Figure 2
Two types of diruthenium phosphonate chains in (I), viewed along the [100] direction. All H atoms, water molecules and hydrogen bonds, except for the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds, have been omitted for clarity. [Symmetry codes: (vii) $-x, 1-y, 2-z$; (viii) $1-x,-y, 1-z$.]

Figure 3
Packing diagram of (I). All H atoms, water molecules and hydrogen bonds, except for the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds, have been omitted for clarity.
$\mathrm{N} 9-\mathrm{H} 9 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}=3.052(5) \AA$ and $\mathrm{N} 11-\mathrm{H} 11 C \cdots \mathrm{O} 1^{\text {iv }}=$ 2.955 (5) \AA for Ru_{2}, and $\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 11^{\mathrm{i}}=3.001$ (5) \AA and $\mathrm{N} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{O}^{\mathrm{v}}=2.967$ (5) \AA for $\mathrm{Ru} 2_{2}$; symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, y, z-1$; (iv) $1-x, 1-y, 2-z$; (v) $2-x, 1-y, 1-z$] leads to the formation of a threedimensional supramolecular open-network structure, with channels generated along the [100] direction (Fig. 3). The uncoordinated water molecules and chloride anions reside within these channels. Although each $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ ion is chiral, the overall structure of (I) is not chiral because each $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ ion is centrosymmetrically related to its equivalent.

Experimental

$\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{Ru}_{2}\left\{\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})\left(\mathrm{PO}_{3}\right)_{2}\right\}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was synthesized according to the method described by Yi et al. (2003). A mixture of $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{Ru}_{2}(\text { hedp })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.0634 \mathrm{~g}, 0.089 \mathrm{mmol}), \mathrm{Co}(\mathrm{en})_{3} \mathrm{Cl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $(2.0231 \mathrm{~g}, 5.1 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was stirred at 343 K for 5 h . The filtrate was kept at room temperature for 30 d , after which time brown column-like single crystals were collected as monophasic
material. Analysis calculated for (I): C 15.29, N 13.37%; found: C 14.61, N 12.32%. IR (KBr, cm^{-1}): $3.507(s, b r), 3440(s, b r), 3212(s$, br), 2362 (w), 1612 (m), 1579 (s), 1463 (s$), 1365$ (m), 1326 (m), 1155 (s), 1057 (s), 963 (s), 903 ($s), 815(m), 776(w), 583(s), 487(s), 439(m)$.

Crystal data
$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]_{2}\left[\mathrm{Ru}_{2}\left(\mathrm{C}_{2} \mathrm{H}^{2}\right.\right.$
$\left.\left.\mathrm{O}_{7} \mathrm{P}_{2}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1245.01$
Triclinic, $P \overline{1}$
$a=10.5166(16) \AA$
$b=15.297$ (2) A
$c=15.497$ (2) \AA
$\alpha=90.788(3)^{\circ}$
$\beta=91.362(4)^{\circ}$
$\gamma=96.273(3)^{\circ}$ 。
$V=2477.2$ (6) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.669 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1000 \\
& \quad \text { reflections } \\
& \theta=2.3-19.8^{\circ} \\
& \mu=1.61 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, brown } \\
& 0.3 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.69, T_{\text {max }}=0.72$
12440 measured reflections

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.06 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e}_{\AA^{-3}}{ }^{-3}$
$\Delta \rho_{\min }=-0.37 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 11^{\mathrm{i}}$	0.90	2.13	3.001 (5)	162
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O}^{\text {ii }}$	0.90	2.48	3.282 (5)	148
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{Cl} 1^{\text {ii }}$	0.90	2.40	3.197 (4)	148
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O}^{\text {i }}$	0.90	2.38	3.006 (5)	127
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 11^{\mathrm{i}}$	0.90	2.24	3.079 (5)	154
N5-H5C $\cdots \mathrm{Cl}^{\text {i }}$	0.90	2.54	3.320 (4)	146
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O}^{\text {i }}$	0.90	1.99	2.872 (5)	167
N6-H6C $\cdots \mathrm{O}^{\text {ii }}$	0.90	2.54	3.040 (5)	116
N6-H6D . O 5W	0.90	2.19	2.999 (14)	150
$\mathrm{N} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O} 12{ }^{\text {iii }}$	0.90	2.37	3.161 (5)	147
N7-H7D \cdots O9 W	0.90	2.19	3.062 (13)	162
$\mathrm{N} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{O} 3^{\text {iv }}$	0.90	2.03	2.906 (5)	164
$\mathrm{N} 8-\mathrm{H} 8 \mathrm{D} \cdots \mathrm{Cl}^{\text {iii }}$	0.90	2.33	3.193 (4)	160
$\mathrm{N} 9-\mathrm{H} 9 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.90	2.33	3.052 (5)	137
$\mathrm{N} 9-\mathrm{H} 9 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.90	2.22	2.978 (5)	141
$\mathrm{N} 9-\mathrm{H} 9 \mathrm{D} \ldots \mathrm{Cl1}{ }^{\text {iv }}$	0.90	2.52	3.297 (4)	146
$\mathrm{N} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{Cl} 2^{\text {iii }}$	0.90	2.56	3.323 (4)	143
$\mathrm{N} 10-\mathrm{H} 10 \mathrm{D} \cdots \mathrm{O} 3 W^{\text {vi }}$	0.90	2.24	3.032 (12)	147
$\mathrm{N} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{O} 1^{\text {iv }}$	0.90	2.13	2.955 (5)	151
N11-H11D \cdots O3 $W^{\text {vi }}$	0.90	2.18	3.071 (14)	169
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$	0.90	2.30	3.106 (5)	148
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{D} \cdots \mathrm{Cl}^{\text {iii }}$	0.90	2.54	3.341 (4)	149
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 10$	0.85	1.86	2.663 (4)	157
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{Cl}^{\text {viii }}$	0.85	2.28	3.078 (4)	157
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 7 W^{\text {i }}$	0.85	2.46	3.268 (19)	159
$\mathrm{O} 3 W-\mathrm{H} 3 W D \cdots \mathrm{O} 2 W$	0.85	2.23	3.081 (18)	174
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O} 6 W^{\text {i }}$	0.85	1.97	2.773 (19)	157
$\mathrm{O} 4 W-\mathrm{H} 4 W C \cdots \mathrm{O} 9^{\text {iii }}$	0.85	1.59	2.429 (15)	169
O6W-H6WC $\cdots \mathrm{O} 4 W^{\text {i }}$	0.85	1.98	2.773 (19)	156
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{E} \cdots \mathrm{O} 5^{\text {vii }}$	0.82	1.91	2.717 (5)	167
O9 W-H9WD . . $\mathrm{Cl}^{\text {iv }}$	0.85	2.57	3.270 (12)	140
$\mathrm{O} 14-\mathrm{H} 14 \mathrm{D} \cdots \mathrm{O} 11^{\text {viii }}$	0.82	1.94	2.679 (5)	150

[^0]
metal-organic compounds

All H atoms were positioned geometrically and refined as riding, with $U_{\text {iso }}$ values of 1.2-1.5 times $U_{\text {eq }}$ of the parent atom, and C-H distances of 0.96 and $0.97 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.90 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of 0.82-1.17 \AA.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China, The Ministry of Education of China, the NSF of Jiangsu Province and the Analysis Center of Nanjing University. The authors thank Mr Yong-Jiang Liu for crystal data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1174). Services for accessing these data are described at the back of the journal.

References

Alberti, G. (1996). In Comprehensive Supramolecular Chemistry, edited by J. M. Lehn, Vol. 7. Oxford: Pergamon.

Bruker (2000). SMART, SAINT, SHELXTL, XPREP and XP. Bruker AXS Inc., Madison, Wisconsin, USA
Cao, G., Hong, H.-G. \& Mallouk, T. E. (1992). Acc. Chem. Res. 25, 420-427. Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510.
Katz, H. E., Scheller, G., Putvinski, T. M., Schilling, M. L., Wilson, W. L. \& Chidsey, C. E. D. (1991). Science, 254, 1485-1486.
McCann, M., Murphy, E., Cardin, C. \& Convery, M. (1993). Polyhedron, 12, 1725-1729.
Yi, X.-Y., Zheng, L.-M., Xu, W. \& Feng, S. (2003). Inorg. Chem. 42, 2847-2829.
Zheng, L.-M., Song, H.-H. \& Xin, X.-Q. (2000). Comments Inorg. Chem. 22, 129-149.

[^0]: Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, y, z-1$; (iii) $x, 1+y, z$; (iv) $1-x, 1-y, 2-z$; (v) $2-x, 1-y, 1-z$; (vi) $1+x, y, z$; (vii) $-x, 1-y, 2-z$; (viii) $1-x,-y, 1-z$.

